Министерство науки и высшего образования РФ

ФГБОУ ВО «Уральский государственный лесотехнический университет»

Инженерно-технический институт

Кафедра транспорта и дорожного строительства

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.О.18 – МЕХАНИКА ГРУНТОВ

Направление подготовки – 08.03.01 «Строительство» Направленность (профиль) – «Автодорожные мосты и тоннели» Квалификация – бакалавр Количество зачётных единиц (часов) – 4 (144)

Разработчик: профессор, д.т.н/И.Н. Кручинин/
Рабочая программа утверждена на заседании кафедры транспорта и дорожного строительства (протокол № $\underline{4}$ от « $\underline{11}$ » <u>января</u> $\underline{2021}$ года).
Зав. кафедрой/С.А. Чудинов/
Рабочая программа рекомендована к использованию в учебном процессе методической комиссией инженерно-технического института (протокол № 6 от «04» февраля 2021 года).
Председатель методической комиссии ИТИ (А.А. Чижов/
Рабочая программа утверждена директором инженерно-технического института
Директор ИТИ

«04» марта 2021 года

Оглавление

1. Оощие положения	4
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	4
3. Место дисциплины в структуре образовательной программы	
4. Объем дисциплины в зачетных единицах с указанием количества академических часов,	
выделенных на контактную работу обучающихся с преподавателем (по видам учебных заняти	ий)
и на самостоятельную работу обучающихся	5
5. Содержание дисциплины, структурированное по темам (разделам) с указанием	
отведенного на них количества академических часов6	
5.1. Трудоемкость разделов дисциплины6	
очная форма обучения6	
5.2 Содержание занятий лекционного типа	
5.3 Темы и формы занятий семинарского типа	
5.4 Детализация самостоятельной работы	
6. Перечень учебно-методического обеспечения по дисциплине	9
7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по	
дисциплине	11
7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения	
образовательной программы11	
7.2. Описание показателей и критериев оценивания компетенций на различных этапах их	
формирования, описание шкал оценивания11	
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний,	
умений, навыков и (или) опыта деятельности, характеризующих этапы формирования	
компетенций в процессе освоения образовательной программы11	
7.4. Соответствие шкалы оценок и уровней сформированных компетенций17	
8. Методические указания для самостоятельной работы обучающихся	
9. Перечень информационных технологий, используемых при осуществлении образовательно	
процесса по дисциплине	19
10.Описание материально-технической базы, необходимой для осуществления	
образовательного процесса по дисциплине	20

1. Общие положения

Дисциплина «Механика грунтов» относится к блоку Б1.О учебного плана, входящего в состав образовательной программы высшего образования 08.03.01 «Строительство» (профиль – «Автодорожные мосты и тоннели»).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Механика грунтов» являются:

- Федеральный закон Российской Федерации от 29.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ Минобрнауки России от 05.04.2017 г. № 301 «Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры»;
- Приказ Министерства образования и науки Российской Федерации от 12.09.2013 г. № 1061 «Об утверждении перечней специальностей и направлений подготовки высшего образования»;
- -Приказ Министерства труда и социальной защиты Российской Федерации от 30.05.2015 г. № 264н «Об утверждении профессионального стандарта «Специалист в области оценки качества и экспертизы для градостроительной деятельности»;
- -Приказ Министерства труда и социальной защиты Российской Федерации от 29 октября 2020 г. № 760н «Об утверждении профессионального стандарта «Специалист в области производственно-технического и технологического обеспечения строительного производства»;
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 08.03.01 «Строительство» (уровень бакалавриата), утвержденный приказом Министерства образования и науки Российской Федерации от 31.05.2017 г. № 481:
- Учебный план образовательной программы высшего образования направления 08.03.01 «Строительство» (профиль «Автодорожные мосты и тоннели») подготовки бакалавров по очной форме обучения, одобренные Ученым советом УГЛТУ (протокол от 18.03.2021 г. № 3).

Обучение по образовательной программе направления подготовки 08.03.01 «Строительство» (профиль – «Автодорожные мосты и тоннели») осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и/или опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы в целом.

Цель дисциплины — формирование системы знаний, умений и владений в области механики грунтов, необходимых для проектирования, строительства и эксплуатации мостовых и тоннельных сооружений в сложных грунтово-геологических условиях.

Задачи дисциплины:

- изучение принципов и методов получения и использования информации о физикомеханических свойствах грунтов во всем их многообразии;
- освоение методики и методов расчета напряженно-деформированного состояния грунтового массива, оценки прочности и их устойчивости;
- изучение общих принципов и методов решения задач, связанных с прогнозом полных осадок транспортных сооружений;
- овладения методами оценки устойчивости склонов, откосов и массивных подпорных стенок.

Процесс изучения дисциплины направлен на формирование следующих общепрофессиональных компетенций:

- ОПК-1 - способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата.

В результате изучения дисциплины обучающийся должен: знать:

- -общие принципы оценки физико-механических свойств грунтов;
- -методику расчета прочности грунтовых оснований;
- основные положения оценки напряженно-деформируемого состояния грунтов;
- основные актуализированные нормативно-технические документы в области строительства инженерных сооружений.

уметь:

- на основе анализа физико-механических свойств грунтов оценивать устойчивость грунтовых массивов от оползания и разрушения;
 - -определять величину давления грунта на ограждающие конструкции;
- -формулировать и решать задачи связанные с прогнозом полных осадок транспортных и технических сооружений на автомобильных дорогах;

владеть:

- -работой на ПЭВМ с использованием прикладного программного обеспечения по проектированию грунтовых оснований автомобильных дорог;
- -самостоятельной работой с учебной, научно-технической литературой, электронным каталогом.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к части, формируемой участниками образовательных отношений, что означает формирование в процессе обучения у бакалавра основных профессиональных знаний и компетенций в рамках выбранного профиля.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

Обеспечивающие	Сопутствующие	Обеспечиваемые
Дополнительные главы фи-	Математические методы в	Ресурсосберегающие техноло-
зики	инженерии	гии в строительстве
Дополнительные главы ма-		и эксплуатации мостовых со-
тематики		оружений
Сопротивление материалов	Строительная механика	Подготовка к сдаче и сдача
Теоретическая механика		государственного экзамена

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с $\Phi\Gamma$ OC BO, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Вид учебной работы	Всего академических часов (очная форма)
Контактная работа с преподавателем*:	68,25
лекции (Л)	28
практические занятия (ПЗ)	40
лабораторные работы (ЛР)	-
иные виды контактной работы	0,25
Самостоятельная работа обучающихся:	75,75
изучение теоретического курса	32
подготовка к текущему контролю	32
подготовка к промежуточной аттестации	11,75
Вид промежуточной аттестации:	Зачет с оценкой
Общая трудоемкость	4/144

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25.02.2020 г.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

№ π/π	Наименование раздела дисциплины	Л	П3	ЛР	Всего контактной работы	Самостоя- тельная работа
1	История развития, современное состояние и перспективы развития геомеханики	2	-	ı	2	2
2	Классификация расчетных моделей грунтовых оснований	2	-	1	2	2
3	Механические свойства грунтов	2	10	ı	12	12
4	Процессы фильтрации в грунтах, основные закономерности	2	-	-	2	2
5	Плоская и пространственная задача распределения напряжений в грунтовых массивах	2	-	1	2	2
6	Теория предельного напряженного состояния грунта		10	-	14	14
7	7 Предельное равновесие грунтового мас- сива		-	-	2	2
8	8 Методы расчетов устойчивости откосов и склонов		10	-	12	12
9	Оценка давлений на ограждающие конструкции		-	1	4	2
10	О Деформации грунтов и прогноз осадок оснований		10	-	12	12
11	Теория фильтрационной консолидации	4	-	-	4	2

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контактной работы	Самостоя- тельная работа
	грунтов. Реологические процессы в грунтах					
	Итого по разделам:		40	-	68	64
Про	Промежуточная аттестация		X	X	0,25	11,75
Всего					144	

5.2 Содержание занятий лекционного типа

Тема 1. История развития, современное состояние и перспективы развития геомеханики

Задачи и принципиальные подходы к решению проблемы повышения качества строительства транспортных сооружений. Нормативная база по проектированию оснований и фундаментов транспортных сооружений.

Тема 2. Классификация расчетных моделей грунтовых оснований

Основные закономерности механики грунтов. Общие принципы построения условной среды для построения математических моделей. Виды линейных и нелинейных моделей грунтовой среды. Динамические модели. Физические свойства грунтов.

Тема 3. Механические свойства грунтов

Основные закономерности механики грунтов. Уплотнение грунтов под действием внешней нагрузки. Компрессионные характеристики грунтов. Сжатие при возможности бокового расширения грунта. Полевые методы определения физико-механических характеристик грунтов.

Тема 4. Процессы фильтрации в грунтах, основные закономерности

Виды воды в грунтах. Водопроницаемость грунтов. Определение коэффициента фильтрации. Основные механические свойства некоторых особых и стуктурно-неустойчивых грунтов (лессовые, мерзлые, рыхлые пески, илы, торф).

Тема 5. Плоская и пространственная задача распределения напряжений в грунтовых массивах

Общие положения. Основные модели грунтовой среды. Плоская и пространственная задача распределения напряжений. Виды нагрузок: местные, внутренние. Определение напряжения от действия сосредоточенной силы. Определение напряжения от действия равномерно распределенной нагрузки, от действия собственного веса грунта.

Тема 6. Теория предельного напряженного состояния грунта

Особенности поведения грунтов при приложении внешней нагрузки. Фазы напряженного состояния. Предельное равновесие. Распределение напряжений по подошве фундамента. Критические нагрузки на грунт.

Тема 7. Предельное равновесие грунтового массива

Предельное равновесие грунтового массива. Виды и расположения поверхностей скольжения. Сеть линий скольжения в грунтовом массиве. Понятие расчетного сопротивления грунта

Тема 8. Методы расчетов устойчивости откосов и склонов

Общие положения устойчивости откосов. Причины потери устойчивости. Методы расчетов устойчивости откосов. Круглоцилиндрические поверхности скольжения. Оползни.

Тема9. Оценка давлений на ограждающие конструкции

Определение давления на ограждающие конструкции (подпорные стенки) от грунтового массива аналитическим методом. Уточненный графоаналитический метод оценки давления на стенки при различных видах нагружения.

Тема 10. Деформации грунтов и прогноз осадок оснований

Виды нагрузок на грунтовые массивы. Особенности расчетов методами местных общих и упругих деформаций. Метод послойного суммирования от сплошной нагрузки. Определение осадок по методу эквивалентного слоя.

Tema11. Теория фильтрационной консолидации грунтов. Реологические процессы в грунтах

Особенности перемещения воды в грунтовых массивах. Основные свойства дисперсных грунтов. Определение коэффициента консолидации. Основы теории фильтрационной консолидации. Оценка осадок оснований во времени. Деформации ползучести. Релаксация напряжений. Современные нелинейные методы прогнозирования напряженно-деформированного состояния систем «основание - транспортное сооружение».

5.3 Темы и формы занятий семинарского типа

Учебным планом по дисциплине предусмотрены практические занятия.

No	Наименование раздела дисциплины	Форма проведения	Трудоемкость, час
745	(модуля)	занятия	очная
1	Механические свойства грунтов	Практическая работа	10
2	Теория предельного напряженного состояния грунта	Практическая работа	10
3	Методы расчетов устойчивости откосов и склонов	Практическая работа	10
4	Деформации грунтов и прогноз осадок оснований	Практическая работа	10
Итог	го часов:	40	

5.4 Детализация самостоятельной работы

$N_{\underline{0}}$	Наименование раздела дисципли-	Вид самостоятельной работы	Трудоемкость, час
	ны (модуля)	-	очная
1	История развития, современное состояние и перспективы развития геомеханики	Изучение теоретического ма- териала	2
2	Классификация расчетных моделей грунтовых оснований	Изучение теоретического материала	2
3	Механические свойства грунтов	Подготовка к практической работе. Изучение теоретического материала	12
4	Процессы фильтрации в грунтах, основные закономерности	Изучение теоретического материала	2
5	Плоская и пространственная задача распределения напряжений в грунтовых массивах	Изучение теоретического ма- териала	2
6	Теория предельного напряженного состояния грунта	Подготовка к практической работе. Изучение теоретического материала	14
7	Предельное равновесие грунтового массива	Изучение теоретического материала	2
8	Методы расчетов устойчивости откосов и склонов	Подготовка к практической работе. Изучение теоретического материала	12
9	Оценка давлений на ограждающие конструкции	Изучение теоретического материала	2
10	Деформации грунтов и прогноз осадок оснований	Подготовка к практической работе. Изучение теоретического материала	12
11	Теория фильтрационной консолидации грунтов. Реологические	Изучение теоретического ма- териала	2

№	Наименование раздела дисципли-	Вид самостоятельной работы	Трудоемкость, час
	ны (модуля)		очная
	процессы в грунтах		
12	Подготовка к промежуточной аттестации	Подготовка к зачету с оценкой	11,75
Итог			75,75

6. Перечень учебно-методического обеспечения по дисциплине

Основная и дополнительная литература

Основная и дополнительная литература			
№	Автор, наименование	Год изда- ния	Примечание
	Основная литература		
1	Далматов, Б. И. Механика грунтов, основания и фундаменты (включая специальный курс инженерной геологии) : учебник для вузов / Б. И. Далматов. — 6-е изд., стер. — Санкт-Петербург : Лань, 2021. — 416 с. — ISBN 978-5-8114-7041-9. — Текст : электронный // Лань : электроннобиблиотечная система. — URL: https://e.lanbook.com/book/154379 — Режим доступа: для авториз. пользователей.	2021	Полнотекстовый доступ при входе по логину и паролю*
2	Украинченко, Д. А. Цикл лабораторных работ по дисциплине «Механика грунтов» : учебное пособие / Д. А. Украинченко, Л. А. Муртазина. — Оренбург : Оренбургский государственный университет, 2014. — 136 с. : схем., табл., ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=330601 — Текст : электронный.	2014	Полнотекстовый доступ при входе по логину и паролю*
3	Муртазина, Л. А. Задачник по механике грунтов: учебное пособие / Л. А. Муртазина. — Оренбург: ОГУ, 2019. — 137 с. — ISBN 978-5-7410-2245-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/159945 . — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*
	Дополнительная литература		
4	Мангушев, Р.А. Основания и фундаменты. Решение практических задач: учебное пособие / Р.А. Мангушев, Р.А. Усманов. — 3-е изд., стер. — Санкт-Петербург: Лань, 2019. — 172 с. — ISBN 978-5-8114-4094-8. — Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. — URL: https://e.lanbook.com/book/115191 — Режим доступа: для авториз. пользователей.	2019	Полнотекстовый доступ при входе по логину и паролю*
5	Плешко, М. С. Механика грунтов. Основания и фундаменты: учебное пособие / М. С. Плешко, М. В. Плешко. — Ростов-на-Дону: РГУПС, 2017. — 94 с. — ISBN 978-5-88814-769-6. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/177148 . — Режим доступа: для авториз. пользователей.	2017	Полнотекстовый доступ при входе по логину и паролю*

^{*-} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Методическое обеспечение по дисциплине

- 1. **Автодорожные мосты и тоннели: основные понятия, термины и определения**: методические указания для проведения занятий семинарского типа, организации самостоятельной работы, выполнения выпускной квалификационной работы обучающихся всех форм обучения по направлениям подготовки 08.03.01 и 08.04.01 «Строительство» (направленность (профиль) «Автодорожные мосты и тоннели») / О.В. Алексеева, О.С. Гасилова, Д.В. Демидов [и др.]; Министерство науки и высшего образования Российской Федерации, Уральский государственный лесотехнический университет, Инженерно-технический институт, Кафедра автомобильного транспорта и транспортной инфраструктуры. Екатеринбург, 2020. 54 с. Текст: электронный. URL: https://elar.usfeu.ru/handle/123456789/10048
- 2. Кручинин, И. Н. **Механика грунтов**: метод. указания для практических занятий для студентов очной и заочной форм обучения. Направления 653600 Транспортное строительство, специальности 291000 Автомобильные дороги и аэродромы и направления 550100 Строительство бакалавр техники и технологии. Дисциплина Механика грунтов / и. Н. Кручинин : Урал. гос. лесотехн. ун-т. Екатеринбург : УГЛТУ, 2005. 22. с. URL: https://elar.usfeu.ru/handle/123456789/810

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань (http://e.lanbook.com/), ЭБС Университетская библиотека онлайн (http://biblioclub.ru/), содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебно-методической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс». Режим доступа: для авториз. пользователей.
 - 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
 - 3. База данных Scopus компании ElsevierB.V. Режим доступа: https://www.scopus.com/

Профессиональные базы данных

- 1. ГОСТ Эксперт. Единая база ГОСТов Российской Федерации (http://gostexpert.ru/);
- 2. Информационные базы данных Росреестра (https://rosreestr.ru/);
- 3. ФБУ РФ Центр судебной экспертизы (http://www.sudexpert.ru/);
- 4. Транспортный консалтинг (http://trans-co.ru/?page id=13);
- 5. Рестко Холдинг (https://www.restko.ru/).

Нормативно-правовые акты

- 1. ГОСТ 25100-2020 Грунты. Классификация. Дата введения 2021-01-01.
- 2. ГОСТ 30416-2012 Грунты. Лабораторные испытания. Общие положения
- 3. ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава
- 4. ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружени
- 5.СП 78.13330.2012 Автомобильные дороги. Актуализированная редакция СНиП 3.06.03-85.
- 6.СП 45.13330.2017 "СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты" (с изменением N 1)
- 7.СП 22.13330.2016 Основания зданий и сооружений Актуализированная редакция СНиП 2.02.01-83*. Дата введения 2017-07-015.
- 8. СП 11 105 97. Инженерно-геологические изыскания для строительства. Часть І. Общие правила производства работ. Часть ІІ. Правила производства работ в районах развития опасных геологических процессов

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ОПК-1 – способен решать задачи профессиональ-	Промежуточный контроль: задания в те-
ной деятельности на основе использования теоре-	стовой форме к зачету с оценкой
тических и практических основ естественных и	Текущий контроль:
технических наук, а также математического аппа-	практические задания
рата	•

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания выполнения заданий в тестовой форме на зачете с оценкой (промежуточный контроль формирования компетенции ОПК-1):

По итогам выполнения тестовых заданий оценка производится по двухбалльной шкале. При правильных ответах на:

86-100% заданий – оценка «отлично»;

71-85% заданий – оценка «хорошо»;

51-70% заданий – оценка «удовлетворительно»;

менее 51% - оценка «неудовлетворительно».

Критерии оценивания практических заданий (текущий контроль формирования компетенций ОПК-1):

отпично: выполнены все задания, бакалавр четко и без ошибок ответил на все контрольные вопросы.

хорошо: выполнены все задания, бакалавр без с небольшими ошибками ответил на все контрольные вопросы.

удовлетворительно: выполнены все задания с замечаниями, бакалавр ответил на все контрольные вопросы с замечаниями.

неудовлетворительно: бакалавр не выполнил или выполнил неправильно задания, ответил на контрольные вопросы с ошибками или не ответил на конкретные вопросы.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Задания в тестовой форме к зачету с оценкой (промежуточный контроль)

- 1. Расчетная модель грунтового основания это:
- +Условная среда, заменяющая реальный грунт, механические свойства которой хорошо изучены
- -Набор поправочных коэффициентов
- -Геометрическая схема приложения внешних воздействий
- 2. Уплотнение грунта под действием внешней нагрузки без возможности бокового расширения проводят на приборах:
- +компрессионные (одометры)
- -трехосного сжатия (стабилометры)
- -прессиометры
- 3. Неоднородный грунт это:
- + имеющий коэффициент неоднородности больше 3
- имеющий коэффициент неоднородности от 1 до 3
- имеющий коэффициент неоднородности меньше 1

- 4. Коэффициент пористости грунта это:
- + отношение объема пор к объему твердой части скелета грунта
- отношение объема пор к объему занимаемому сухим грунтом
- отношение объема твердой части скелета грунтов к объему занимаемому сухим грунтом
- 5. Коэффициент фильтрации грунтов характеризует:
- + количество воды, проходящее в единицу времени через поперечное сечение 1см квадратный при гидравлическом градиенте равном 1
- способность грунта впитывать в себя воду в течении единицы времени
- количество воды удерживаемое грунтом в течении суток.
- 6. Число пластичности грунта это:
- + интервал влажности, в пределах которой грунт может деформироваться без разрывов
- степень увлажнения грунта
- влажность грунта выраженная в %
- 7. Для определения консистенции грунта необходимо знать:
- + влажность грунта на границе раскатывания, текучести и природную влажность
- относительную и абсолютную влажность грунта
- влажность грунта на границе текучести и раскатывания
- 8. Модуль общей деформации грунта это:
- + отношение удельного давления к относительной деформации грунта
- отношение удельного давления к упругой деформации грунта
- отношение удельного давления к полной деформации грунта
- 9. Коэффициент сжимаемости (уплотнения) грунта то это:
- + отношение изменения коэффициента пористости к величине действующего давления
- -отношение величины коэффициента пористости при загрузке и разгрузки образца грунта
- отношение величины сжатия образца к первоначальной высоте образца грунта
- 10. Деформация сдвига это:
- +смещение одной части грунта по другой, вызванное касательными напряжениями от внешней нагрузки
- -Относительная осадка грунта, вызванная нормальным давлением
- -уплотнение части грунта, вызванное внешним напряжением
- 11. Математическое выражение условия предельного равновесия для несвязных грунтов включает в себя:
- +горизонтальные, вертикальные напряжения и значение синуса угла внутреннего трения
- горизонтальные, вертикальные напряжения и значение тангенса угла внутреннего трения
- горизонтальные, вертикальные напряжения, значение тангенса угла внутреннего трения и касательные напряжения
- 12. К структурно-неустойчивым грунтам относятся только:
- +лессовые, мерзлые, рыхлые пески
- -вечномерзлые, илы, торф
- -мерзлые, сапропель, торф
- 13. Просадочность грунта можно определить:
- +по данным компрессионных испытаний с подачей воды в прибор для замачивания образца
- по данным компрессионных испытаний, после снятия нагрузки
- по данным влагопоглощения грунта
- 14. Модуль упругости грунтов характеризует:
- + зависимость между давлением и упругой составляющей деформации грунта
- зависимость между давлением и пластическими деформациями грунта
- зависимость между давлением и упругими и пластическими деформациями грунта
- 15. Для определения сжимающих напряжений в произвольной точке грунтового массива необходимо знать:
- +значение внешней силы, глубину рассматриваемого слоя, коэффициент, зависящий от положения рассматриваемой точки
- -внешнею силу, модуль общей деформации, глубину рассматриваемого слоя
- внешнею силу, модуль упругости, глубину рассматриваемого слоя

- 16. Напряжения в грунтовом массиве распространяются на большую глубину при:
- + большей площади загружения
- меньшей площади загружения
- слоистой структуре грунтового массива
- 17. Влияние сжимающих напряжений от нагрузки шириной в сказываются на глубине:
- +66
- -12 **ø**
- -2 **B**
- 18. «Угол видимости» при оценки напряженного состояния грунта это:
- + угол, образованный прямыми, соединяющими рассматриваемую точку с краями равномерно распределенной нагрузки
- угол, образованный прямыми, соединяющими горизонтальную плоскость и изобарами равных напряжений
- угол в основании сформированного ядра уплотнения.
- 19. Давление от собственного веса грунта для однородных грунтов изменяется:
- + по линейному закону
- по нелинейному закону
- по квадратичной зависимости от глубины
- 20. Касательные напряжения (сдвиги) имеют наибольшие значения:
- + под угловыми точками прямоугольного фундамента
- под центром прямоугольного фундамента
- на осевой линии прямоугольного фундамента
- 21. Выберите последовательность напряженного состояния грунта по мере увеличению нагрузки:
- + фаза уплотнения, местные пластические деформации сдвигов, пластические сдвиги и течение
- местные пластические деформации сдвигов, уплотнение, пластические сдвиги и течение
- пластические сдвиги и течение, местные пластические деформации сдвигов, фаза уплотнения
- 22. Для определения предельного равновесия для несвязных грунтов надо знать:
- главные напряжения, тангенс угла внутреннего трения
- + главные напряжения, синус угла внутреннего трения
- сжимающее напряжение, угол внутреннего трения
- 23. Предельная критическая нагрузка на грунт это:
- + нагрузка при которой под фундаментом сформировываются сплошные области предельного равновесия, грунт приходит в неустойчивое состояние
- нагрузка при которой под фундаментом возникают зоны сдвига, заканчивается фаза уплотнения
- нагрузка при которой под фундаментом возникает ядро уплотнения
- 24. Коэффициент устойчивости откоса это:
- + отношение момента удерживающих сил к моменту сдвигающих сил
- отношение момента сдвигающих сил к моменту удерживающих сил
- отношение момента сдвигающих сил к моменту сил сцепления грунта
- 25. Максимальное активное давление грунта на подпорную стенку возникает на глубине: +равной величине засыпки грунта
- равной середине площадки загружения
- равной верхней точки подпорной стенки
- 26. в основу способа вычисления осадок фундаментов методом послойного суммирования положено допущение:
- + сжатия слоя грунта без возможности бокового расширения
- сжатия слоя грунта с возможностью бокового расширения
- сжатия слоя грунта без подстилающего жесткого слоя
- 27. Расчет осадок методом эквивалентного слоя:
- + позволяет упростить расчет для многослойных оснований

- Не учитывать жесткость фундаментов
- Не учитывать форму фундаментов
- 28. Коэффициент консолидации грунта это:
- +частное от деления коэффициента фильтрации на произведение коэффициента относительной сжимаемости грунта и удельного веса воды
- частное от деления коэффициента относительной сжимаемости грунта и удельного веса воды на коэффициент фильтрации
- 29. Фильтрационная консолидация водонасыщенных грунтов это:
- + процесс уплотнения грунта во времени, вследствие уменьшения влажности при постоянном напряжении
- процесс увеличения объема грунта в следствии повышения пористости при постоянном напряжении
- процесс увеличения объема грунта в следствии повышения влажности при постоянном напряжении
- 30. Степень консолидации это:
- +отношение осадки во времени t к полной осадке
- отношение полной осадки к относительной
- предельная величина уплотнения грунта
- 31. Выберите правильное определение характеристик грунтов, обладающих реологическими свойствами:
- + длительная прочность наименьший предел прочности при релаксации напряжений, ниже которого сопротивление не снижается
- временная прочность сопротивление грунта в самом начале загружения
- мгновенная прочность прочность, вызывающая разрушение грунта за определенный промежуток времени
- 32. Гравитационная вода в грунтах перемещается в направлении:
- + пониженного давления
- Повышенного давления
- Грунтов с большей пористостью
- 33. Весовая влажность грунта это:
- + отношение влаги, содержащейся в порах грунта, к весу скелета грунта в проц.
- отношение влаги, содержащейся в порах грунта, к весу образца грунта в проц.
- отношение влаги, содержащейся в порах грунта, к весу скелета грунта в относительных единицах
- 34. Показатель текучести глинистых грунтов позволяет оценить:
- +консистенцию грунта
- Число пластичности
- Относительную влажность грунта
- 35. Влагоемкость грунта это:
- + способность поглощать и удерживать воду
- Пропускать сквозь себя гравитационную воду
- Способность вымывать грунтовые частицы
- 36. Вымываемость (суффозия) это:
- + вынос части грунта во взвешенном состоянии
- способность поглощать и удерживать воду
- способность пропускать сквозь себя воду
- 37. «Грунтовая масса» это:
- + полностью водонасыщенный грунт, в порах которого находится свободная вода
- сплошной массив грунта
- массив грунта ограниченной толщины
- 38. Структурная прочность грунта при компрессионных испытаниях соответствует:
- + резкому перелому компрессионной кривой при малых ступенях давления
- Началу участка стабилизации компрессионной кривой
- Наибольшему значению давления

- 39. Коэффициент относительной сжимаемости оценивает:
- + относительную осадку, приходящейся к величине действующего давления
- Абсолютную осадку элементарного слоя
- Изменение величины осадки по глубине грунтового массива
- 40. Коэффициент бокового давления можно определить при испытаниях:
- + трехосного сжатия (стабилометр)
- Компрессионного сжатия (одометры)
- 41. Сопротивление сдвигу изучают в условиях:
- + предельного напряженного состояния грунта
- Начального напряженного состояния грунта
- Линейных деформаций грунта
- 42. Просадочные грунты это:
- + грунты которые под воздействием поверхностных или подземных вод утрачивают свою природную структуру
- грунты которые под воздействием внешней нагрузки деформируются
- грунты которые деформируются под воздействием нагрузки от собственного веса
- 43. Плывунные грунты это:
- + грунты, состояние которых по плотности и влажности таковы, что способны под влиянием динамических воздействий приходить в движение вместе с водой
- Водонасыщенные, малосвязные грунты
- грунты, состояние которых по плотности и влажности таковы, что способны под влиянием внешних воздействий изменять свою влажность
- 44. Модуль общей деформации грунта характеризует:
- + упругие и пластические деформации
- Только пластические деформации
- Только линейные деформации
- 45. Наличие жесткого подстилающего слоя:
- + концентрирует напряжение по оси нагрузки
- Уменьшает напряжение по оси нагрузки
- Не изменяет характер распространения напряжение по оси нагрузки
- 46. Распределение контактного давления по подошве фундамента зависит:
- + от жесткости фундамента, глубины заложения
- от наличия жесткого подстилающего слоя
- 47. Границу сжимаемой толщи при методе послойного суммирования принимают равной:
- + две десятых бытового давления
- два бытовых давления
- шесть бытовых давлений
- 48. Бытовое давление грунта это:
- + давление грунта от собственного веса на уровне подошвы фундамента
- давление грунта от собственного веса на уровне границы сжимаемой толщи
- давление грунта от собственного веса на уровне дневной поверхности
- 49. Для фундаментов мелкого заложения характерно:
- + выпирание грунта
- Просадки без бокового выпора
- 50. Учет ядра уплотнения под фундаментом позволяет:
- + увеличить предельную нагрузку на грунт
- Уменьшить предельную нагрузку на грунт
- 51. Сеть линий скольжения в грунте можно получить:
- + решив дифференциальное уравнение равновесия грунтов в предельно напряженном состоянии
- Построив эпюру сжимающих и касательных напряжений
- Построив эпюру сжимающих, касательных напряжений и боковых распоров
- 52. При расчете устойчивости откосов методом круглоцилиндрических поверхностей скольжения выбирают:

- + критическую поверхность скольжения
- произвольную поверхность скольжения
- поверхность скольжения с наименьшим радиусом
- 53. Если подпорная стенка поворачивается по направлению от грунта то это:
- + активное давление на стенку
- Нейтральное давление на стенку
- Пассивное давление на стенку
- 54. Начальная критическая нагрузка на грунт это:
- + начало возникновения в грунте сдвига и окончание фазы уплотнения
- Окончание сдвигов в грунте, боковой выпор
- Нагрузка, при которой происходит переход грунта в неустойчивое состояние
- 55. В основу метода послойного суммирования осадок фундаментов положено допущение:
- + размер фундамента значительно превышает мощность сжимаемого слоя грунта
- размер фундамента пренебрежимо мал по сравнению с мощностью сжимаемого слоя грунта
- размер фундамента равен мощности сжимаемого слоя грунта
- 56. В формулу для определения осадки методом эквивалентного слоя входят:
- + мощность эквивалентного слоя, средний относительный коэффициент сжимаемости, среднее давление по подошве фундамента
- мощность эквивалентного слоя, модуль общей деформации, коэффициент постели
- мощность эквивалентного слоя, коэффициент Пуассона, средний коэффициент уплотнения
- 57. В основу расчетов осадок во времени водонасыщенных грунтов (грунтовая масса) положено:
- + уплотнение грунта за счет отжатия воды из пор
- уплотнение грунта за счет изменения пористости
- уплотнение грунта за счет изменения агрегатного состояния
- 58. Мощность сжимаемой толщи грунта при расчете методом эквивалентного слоя составляет:
- + два эквивалентных слоя
- Две десятых эквивалентного слоя
- Шесть эквивалентных слоев
- 59. Подпорные стенки с наклонной гранью испытывают меньшее активное давление если:
- + угол наклона грани отрицательный
- угол наклона грани положительный
- угол наклона грани равен нулю
- 60. Какие типы грунтов оказывают на подпорную стенку меньшее давление:
- + связные грунты
- Несвязные грунты
- 61. Что такое осадка расструктурирования:
- + осадка от нарушения естественной структуры грунта
- осадка в следствии уменьшения объема пор от внешнего давления
- осадка от разгрузки грунта и упругого поднятия дна котлована

Практические задания для практических занятий (текущий контроль)

- 1. Компрессионные свойства грунтов. Сжимаемость.
- 2. Определение напряжений в грунте от действия сосредоточенной силы.
- 3. Определение напряжений в грунте от действия различных видов внешних нагрузок.
- 4. Определение критических нагрузок на грунт.
- 5. Оценка осадок фундаментов методом эквивалентного слоя

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

7.4. Соответствие шкалы оценок и уровней сформированных компетенций			
Уровень сфор-			
мированных	Оценка	Пояснения	
компетенций			
Высокий	онгилто	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся умеет на основе анализа физикомеханических свойств грунтов оценивать устойчивость грунтовых массивов от оползания и разрушения; определять величину давления грунта на ограждающие конструкции; формулировать и решать задачи связанные с прогнозом полных осадок транспортных и технических сооружений на автомобильных дорогах; Обучающийся владеет навыками работы на ПЭВМ с использованием прикладного программного обеспечения по проектированию грунтовых оснований автомобильных дорог; навыками работы с учебной, научно-технической литературой, электронным каталогом.	
Базовый	хорошо	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся умеет на основе анализа физикомеханических свойств грунтов оценивать устойчивость грунтовых массивов от оползания и разрушения; определять величину давления грунта на ограждающие конструкции; формулировать и решать задачи связанные с прогнозом полных осадок транспортных и технических сооружений на автомобильных дорогах; Обучающийся владеет основными навыками работы на ПЭВМ с использованием прикладного программного обеспечения по проектированию грунтовых оснований автомобильных дорог; основными навыками работы с учебной, научно-технической литературой, электронным каталогом.	
Пороговый	удовлетвори- тельно	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся не умеет самостоятельно на основе анализа физико-механических свойств грунтов оценивать устойчивость грунтовых массивов от оползания и разрушения; определять величину давления грунта на ограждающие конструкции; формулировать и решать задачи связанные с прогнозом полных осадок транспортных и технических сооружений на автомобильных дорогах; Обучающийся частично владеет навыками работы на ПЭВМ с использованием прикладного программного обеспечения по проектированию грунтовых оснований автомобильных дорог; навыками работы с учебной, научнотехнической литературой, электронным каталогом.	
Низкий	неудовлетво- рительно	Теоретическое содержание курса не освоено, боль- шинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки;	

Уровень сфор- мированных компетенций	Оценка	Пояснения
		дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не умеет на основе анализа физикомеханических свойств грунтов оценивать устойчивость грунтовых массивов от оползания и разрушения; определять величину давления грунта на ограждающие конструкции; формулировать и решать задачи связанные с прогнозом полных осадок транспортных и технических сооружений на автомобильных дорогах; Обучающийся не владеет навыками работы на ПЭВМ с использованием прикладного программного обеспечения по проектированию грунтовых оснований автомобильных дорог; навыками работы с учебной, научно-технической литературой, электронным каталогом.

8. Методические указания для самостоятельной работы обучающихся

Самостоятельная работа — планируемая учебная, учебно-исследовательская, научноисследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль в контроле за работой студентов).

Самостоятельная работа студентов в вузе является важным видом их учебной и научной деятельности. Самостоятельная работа играет значительную роль в рейтинговой технологии обучения. Поэтому самостоятельная работа должна стать эффективной и целенаправленной работой студентов.

Формы самостоятельной работы бакалавров разнообразны. Они включают в себя:

- изучение и систематизацию официальных государственных документов: законов, постановлений, указов, нормативно-инструкционных и справочных материалов с использованием информационно-поисковых систем «Консультант Плюс», «Гарант», глобальной сети «Интернет»;
- изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, статистической, периодической и научной информации;
 - создание презентаций, докладов по выполняемому проекту;
 - участие в работе конференций, комплексных научных исследованиях;
 - написание научных статей.

В процессе изучения дисциплины «Механика грунтов» бакалаврами направления 08.03.01 основными видами самостоятельной работы являются:

- подготовка к аудиторным занятиям (лекциям и практическим занятиям) и выполнение соответствующих заданий;
- самостоятельная работа над отдельными темами учебной дисциплины в соответствии с учебно-тематическим планом;
 - подготовка и выполнение практических работ;
 - выполнение тестовых заданий;
 - подготовка к зачету с оценкой.

Самостоятельное выполнение *тестовых заданий* по всем разделам дисциплины сформированы в фонде оценочных средств (Φ OC). Данные тесты могут использоваться:

- обучающимися при подготовке к зачету с оценкой в форме самопроверки знаний;
- преподавателями для проверки знаний в качестве формы промежуточного контроля на практических занятиях;
 - для проверки остаточных знаний обучающихся, изучивших данный курс.

Тестовые задания рассчитаны на самостоятельную работу без использования вспомогательных материалов. То есть при их выполнении не следует пользоваться учебной и другими видами литературы. Для выполнения тестового задания, прежде всего, следует внимательно прочитать поставленный вопрос. После ознакомления с вопросом следует приступать к прочтению предлагаемых вариантов ответа. Необходимо прочитать все варианты и в качестве ответа следует выбрать индекс (цифровое обозначение), соответствующий правильному ответу. На выполнение теста отводится ограниченное время. Оно может варьироваться в зависимости от уровня тестируемых, сложности и объема теста. Как правило, время выполнения тестового задания определяется из расчета 45-60 секунд на один вопрос. Содержание тестов по дисциплине ориентировано на подготовку обучающихся по основным вопросам курса. Уровень выполнения теста позволяет преподавателям судить о ходе самостоятельной работы обучающихся в межсессионный период и остепени их подготовки к зачету с оценкой.

Подготовка и выполнение практической работы. При подготовке к практической работе обучающемуся необходимо изучить основную литературу, ознакомится с дополнительной литературой, получить задание от преподавателя.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- при проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов.
- практические занятия по дисциплине проводятся с использованием платформы MOODLE, Справочной правовой системы «Консультант Плюс».

Практические занятия по дисциплине проводятся с использованием бумажных вариантов проектных материалов.

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах и принципах работы с документами (планы, схемы, регламенты, ГОСТы), ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, практическое занятие, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение) и практических методов обучения (выполнение расчетно-графических работ).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства MicrosoftWindows;
- офисный пакет приложений MicrosoftOffice;
- программная система для обнаружения текстовых заимствований в учебных и научных работах "Антиплагиат.ВУЗ";
- двух- и трёхмерная система автоматизированного проектирования и черчения AutoCAD.

10.Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

	_					
- In	$\Lambda \Lambda \Lambda \Lambda$	DAILIIA	TA	OVIT	IITO.	niiai
	ルマいい	вания	ĸ	avn	ито	1 / M 21 VI

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущей и промежуточной аттестации.	Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная столами и стульями. Демонстрационное мультимедийное оборудование: проектор. Переносные: - ноутбук; - комплект электронных учебно-наглядных материалов (презентаций) на флеш-носителях, обеспечивающих тематические иллюстрации.
Помещения для самостоятельной работы	Столы компьютерные, стулья. Персональные компьютеры. Выход в Интернет.
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи. Раздаточный материал. Переносная мультимедийная установка (проектор, экран). Расходные материалы для ремонта и обслуживания техники. Места для хранения оборудования.